"These implants have the potential to maximize the contact between electrodes and brain tissue, while minimizing damage to the brain," said Dr. Walter Koroshetz of the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, which helped pay for the study.
"They could provide a platform for a range of devices with applications in epilepsy, spinal cord injuries and other neurological disorders."
For instance, such a sensitive electrode could detect a seizure as it starts and deliver pulses to counter it. Brain signals might be routed to prosthetics for people with spinal cord and other injuries.
Link via Nerdesque | Image: Reuters